Publications and talks
Publications
- T. Bister, M. Erdmann, U. Köthe, J. Schulte, Inference of cosmic-ray source properties by conditional invertible neural networks, arXiv:2110.09493
- M. Erdmann, J. Glombitza, G. Kasieczka, U. Klemradt, Deep Learning for Physics Research, World Scientific, ISBN: 978-981-123-745-4, www.deeplearningphysics.org
- The Pierre Auger Collaboration, Deep-Learning based Reconstruction of the Shower Maximum Xmax using the Water-Cherenkov Detectors of the Pierre Auger Observatory, 2021 JINST 16 P07019
- M. O.K, K. Zhou, J. Steinheimer, A. Redelbach and H. Stoecker, An equation-of-state-meter for CBM using PointNet, JHEP 10(2021)184
- S. Shi, L. Wang and K. Zhou, Rethinking the ill-posedness of the spectral function reconstruction – why is it fundamentally hard and how Artificial Neural Networks can help, arXiv:2201.02564
- S. Soma, L. Wang, S. Shi and K. Zhou, Neural network reconstruction of the dense matter equation of state from neutron star observables, arXiv:2201.01756
- L. Wang, S. Shi and K. Zhou, Automatic differentiation approach for reconstructing spectral functions with neural networks, accepted at NeurIPS2021 workshop, arXiv:2112.06206
- L. Wang, S. Shi and K. Zhou, Reconstructing spectral functions via automatic differentiation, arXiv:2111.14760
- Y.S. Zhao, L. Wang, K. Zhou and X.G. Huang, Detecting Chiral Magnetic Effect via Deep Learning, arXiv:2105.13761
- Y. Wang, F. Li, Q. Li, H. Lue and K. Zhou, Finding signatures of the nuclear symmetry energy in heavy-ion collisions with deep learning, Phys. Lett. B 822(2021)136669
- S. Shi, K. Zhou, J. Zhao, S. Mukherjee and P. Zhuang, Heavy Quark potential in quark-gluon plasma: deep neural networks meets lattice quantum chromodynamics, Phys. Rev. D 105(2022), 014017
- L. Jiang, L. Wang and K. Zhou, Deep learning stochastic processes with QCD phase transition, Phy. Rev. D103(2021)11,116023
- K. Taradiy, K. Zhou, J. Steinheimer, R. V.Poberezhnyuk, V. Vovchenko and H. Stoecker, Machine learning based approach to fluid dynamics, arXiv:2106.02841
- M. O.K, J. Steinheimer, K. Zhou, A. Redelbach and H. Stoecker, Deep learning based impact parameter determination for the CBM experiment, Particles 4(2021)1, 47-52
- Max Fischer, Eileen Kuehn, Manuel Giffels, Matthias Schnepf, Stefan Kroboth and Oliver Freyermuth COBalD - The opportunistic balancing daemon, 10.5281/zenodo.1887872, April 2020
- Manuel Giffels, Matthias Schnepf, Eileen Kuehn, Stefan Kroboth, Rene Caspart, Ralf Florian von Cube, Max Fischer and Peter Wieneman TARDIS - Transparent Adaptive Resource Dynamic Integration System, 10.5281/zenodo.2240605, Juni 2020
- M. O.K, J. Steinheimer, K. Zhou, A. Redelbach and H. Stoecker, A fast centrality-meter for heavy-ion collisions at the CBM experiment, Phys. Lett. B 811(2020) 135872
- P. Thaprasop, K. Zhou, J. Steinheimer and C. Herold, Unsupervised Outlier detection in heavy-ion collisions, Phys. Scripta 96(2021)6, 064003
- L. Benato, E. Buhmann, M. Erdmann, P. Fackeldey, J. Glombitza, N. Hartmann, G.
Kasieczka, W. Korcari, T. Kuhr, J. Steinheimer, H. Stöcker, T. Plehn, K. Zhou,
Shared Data and Algorithms for Deep Learning in Fundamental Physics,
arXiv:2107.00656
- E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, K.
Krüger, Decoding Photons: Physics in the Latent Space of a BIB-AE Generative
Network, arXiv:2102.12491
- E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, K.
Krüger, Getting High: High Fidelity Simulation of High Granularity
Calorimeters with High Speed, arXiv:2005.05334
- Y. L. Du, K. Zhou, J. Steinheimer, L. G. Pang, A. Motornenko, H. S. Zong, X.
N. Wang and H. Stöcker, Identifying the nature of the QCD transition in
relativistic collision of heavy nuclei with deep learning, arXiv:1910.11530
[hep-ph]
- F. Bührer, F. Fischer, G. Fleig, A. Gamel, M. Giffels, T. Hauth, M. Janczyk, K. Meier, G. Quast, B. Roland, U. Schnoor, M. Schumacher, D. von Suchodoletz and B. Wiebelt, Dynamic Virtualized Deployment of Particle Physics Environments on a High Performance Computing Cluster, Comput Softw Big Sci 3, 9 (2019), arXiv:1812.11044
- J. Steinheimer, L. Pang, K. Zhou, V. Koch, J. Randrup and H. Stoecker, A
machine learning study to identify spinodal clumping in high energy nuclear
collisions, JHEP 1912, 122 (2019)
- R. Lenkiewicz, A. Meistrenko, H. van Hees, K. Zhou, Z. Xu and C. Greiner,
Kinetic approach to a relativistic BEC with inelastic processes, Phys. Rev.
D100, no. 9, 091501
(2019)
- L. Pang, K. Zhou and X. Wang, Interpretable deep learning for nuclear
deformation in heavy ion collisions, arXiv:1906.06429
[nucl-th]
- T. Bister, M. Erdmann, J. Glombitza, N. Langner, J. Schulte, M. Wirtz,
Identification of Patterns in Cosmic-Ray Arrival Directions using Dynamic Graph
Convolutional Neural Networks,
arXiv:2003.13038
- M. Erdmann, F. Schlueter, R. Smida, Classification and Recovery of Radio
Signals from Cosmic Ray Induced Air Showers with Deep Learning, JINST 14 (2019)
P04005,
arXiv:1901.04079
- M. Erdmann, E. Geiser, Y. Rath, M. Rieger, Lorentz Boost Networks: Autonomous
Physics-Inspired Feature Engineering, JINST 14 (2019)
P06006,
arXiv:1812.09722
Talks
- Hosein Hashemi: IEA-GAN: Intra-Event Aware GAN with Relational Reasoning for the Fast Detector Simuluation, ML4Jets 2022
- Dirk Sammel, How to bring HTC to HPC resources - A caching solution for the ATLAS Computing environment in Freiburg, bwHPC Symposium 2021
- Stefan Kroboth, Opportunistic extension of a local compute cluster with NEMO resources for HEP workflows, bwHPC Symposium 2021
- Dirk Sammel, Implementation and benchmarking of a caching solution in the ATLAS Freiburg environment, DPG Dortmund 2021
- Stefan Kroboth, Performance monitoring of the opportunistic resource NEMO at ATLAS-BFG, DPG Dortmund 2021
- Peter Fackeldey, et al, Going fast on a small-size computing cluster, ACAT 2021
- Teresa Bister, et al, Inference of astrophysical parameters with a conditional Invertible Neural Network, ACAT 2021
- Martin Erdmann, et al., Autoencoder-extended Conditional Invertible Neural Networks for Unfolding Signal Traces, ACAT 2021
- Benjamin Fischer, et al, Vectorised Neutrino Reconstruction by Computing Graphs, ACAT 2021
- Benjamin Fischer, et al., Adversarial Neural Network based shape calibrations of observables for jet-tagging at CMS, ACAT 2021
- Niclas Eich, et al., Symmetry aware generation of two-staged particle decays in high-energy physics, ACAT 2021
- Josina Schulte, Conditional invertible neural networks to probe cosmic-ray sources, ML4Jets 2021
- William Korcari: Shared Data and Algorithms for Deep Learning in Fundamental Physics, ML4Jets 2021
- Jonas Glombitza, Deep learning-based algorithms in astroparticle physics, QUARKS 2020
- René Caspart: Transparent Integration of Opportunistic Resources into the WLCG Compute Infrastructure, vCHEP 2021
- R. Florian von Cube: Opportunistic transparent extension of a WLCG Tier 2 center using HPC resources, vCHEP 2021
- Erik Buhmann: Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network, vCHEP 2021
- Sascha Diefenbacher: Fast and Accurate Electromagnetic and Hadronic Showers from Generative Models, vCHEP 2021
- Nikolai Hartmann: Columnar data analysis with ATLAS analysis formats, vCHEP 2021
- Hosein Hashemi: Pixel Detector Background Generation using Generative Adversarial Networks at Belle II, vCHEP 2021
- Engin Eren: High Fidelity Simulation of High Granularity Calorimeters with High Speed, LCWS 2021
- Hosein Hashemi: Pixel Detector Background Generation using Generative Adversarial Networks at Belle II, IML Workshop 2020
- Nikolai Hartmann: Selective background MC simulation with graph neural networks at Belle II, IML Workshop 2020
- Engin Eren: High Fidelity Simulation of High Granularity Calorimeters with High Speed, IML Workshop 2020
- Niclas Eich, A generator cell for LHC event GANs, ML4Jets 2020
- Erik Buhmann: Deep Learning based Energy Reconstruction for the CALICE AHCAL, ML4Jets 2020
- Engin Eren: Generative Models For High Granularity Calorimeters, ML4Jets 2020
- Horst Stöcker: MAGIC-Matter in Astrophysics, Gravitational waves, and Ion Collisions, The 17th National Conference on Nuclear Physics and the 13th Member Congress
- Horst Stöcker: MAGIC-Matter in Astrophysics, Gravitational waves, and Ion Collisions, Symposium on Contemporary QCD Physics and Relativistic Nuclear Collisions
- Benjamin Rottler, Integrating Dynafed into the ATLAS workflow, DPG Aachen 2019
- Benoit Roland, Benchmarking of compute resources, DPG Aachen 2019
- Jan Steinheimer: A machine learning study to identify spinodal clumping in high energy nuclear collisions, Quark Matter 2019
- Kai Zhou: Regressive and generative neural networks for scalar field theory, Quark Matter 2019
- Kai Zhou: Perspectives of Deep learning techniques in Lattice 1+1d Scalar Field Theory, AISIS 2019
- Jan Steinheimer: Effects of Statistical Particlization and Hadronic Rescattering on Fluctuations and Correlations, Hirschegg 2019
- Kai Zhou: Perspectives of Deep learning techniques in Lattice 1+1d Scalar Field Theory, Hirschegg 2019
- Kai Zhou: Regressive and generative neural networks for scalar field theory, AI for Science 2019
- Peter Fackeldey, Knowledge sharing on deep learning in physics research using VISPA, EPJ Web of Conf. 245 (2020) 05040, CHEP 2019
- Dennis Noll, Reinforcement learning for sorting jets in top pair associated Higgs boson production, CHEP 2019
- Manuel Giffels: Effective Dynamic Integration and Utilization of Heterogenous Compute Resources, CHEP 2019
- Max Fischer: Lightweight dynamic integration of opportunistic resources, CHEP 2019
- Christian Schmitt: Highly Performant, Deep Neural Networks with sub-microsecond latency on FPGAs for Trigger Applications, CHEP 2019
- Ivan Kisel: An express data production chain in the STAR experiment, CHEP 2019
- Ivan Kisel: Missing mass method for reconstruction of short-lived particles, CHEP 2019
- James Kahn: Selective background Monte Carlo simulation at Belle II, CHEP 2019
- Thomas Kuhr: Generation of Belle II Pixel Detector Background Data with a GAN, CHEP 2019
- Thomas Kuhr: Collaborative Research Project - Innovative Digital Technologies for Research on Universe and Matter, HOW 2019
Posters